2 00 6 Invariant asymptotic observers
نویسنده
چکیده
This paper presents three non-linear asymptotic observers corresponding to three examples of engineering interest: a chemical reactor, a non-holonomic car, and an inertial navigation system. For each example, the design is based on physical symmetries. This motivates the theoretical development of invariant observers, i.e, symmetrypreserving observers. We consider an observer to consist in a copy of the system equation and a correction term, and we give a constructive method (based on the Cartan moving-frame method) to find all the symmetry-preserving correction terms. They rely on an invariant frame (a classical notion) and on an invariant output-error, a less standard notion precisely defined here. For each example, the convergence analysis relies also on symmetries consideration with a key use of invariant state-errors. For the non-holonomic car and the inertial navigation system, the invariant state-errors is shown to obey an autonomous differential equation independent of the system trajectory. This allows us to prove exponential convergence, with almost global stability for the non-holonomic car and with semi-global stability for the inertial navigation system. Simulations including noise and bias show the practical interest of such invariant asymptotic observers for the inertial navigation system.
منابع مشابه
6 F eb 2 00 7 Invariant observers
This paper presents three non-linear observers on three examples of engineering interest: a chemical reactor, a non-holonomic car, and an inertial navigation system. For each example, the design is based on physical symmetries. This motivates the theoretical development of invariant observers, i.e, symmetry-preserving observers. We consider an observer to consist in a copy of the system equatio...
متن کاملar X iv : m at h / 06 04 09 1 v 1 [ m at h . Q A ] 5 A pr 2 00 6 QUANTUM INVARIANTS , MODULAR FORMS , AND LATTICE POINTS II
We study the SU(2) Witten–Reshetikhin–Turaev invariant for the Seifert fibered homology spheres with M-exceptional fibers. We show that the WRT invariant can be written in terms of (differential of) the Eichler integrals of modular forms with weight 1/2 and 3/2. By use of nearly modular property of the Eichler integrals we shall obtain asymptotic expansions of the WRT invariant in the large-N l...
متن کاملOn Invariant Observers
A definition of invariant observer and compatible output function is proposed and motivated. For systems admitting a Lie symmetry-group G of dimension less or equal to the state dimension and with a G-compatible output, an explicit procedure based on the moving frame method is proposed to construct such invariant observers. It relies on an invariant frame and a complete set of invariant estimat...
متن کاملCaratheodory dimension for observers
In this essay we introduce and study the notion of dimension for observers via Caratheodory structures and relative probability measures. We show that the dimension as a three variables function is an increasing function on observers, and decreasing function on the cuts of an observer. We find observers with arbitrary non-negative dimensions. We show that Caratheodory dimension for obs...
متن کاملar X iv : m at h / 06 12 19 3 v 3 [ m at h . O C ] 5 A pr 2 00 8 1 Symmetry - preserving observers
This paper presents three non-linear observers for three examples of engineering interest: a nonholonomic car, a chemical reactor, and an inertial navigation system. For each example, the design is based on physical symmetries. This motivates the theoretical development of invariant observers, i.e, symmetry-preserving observers. We consider an observer to consist of a copy of the system equatio...
متن کامل